

Model Evaluation Workshop

Kissimmee Watershed Hydrologic Assessment, Modeling, and Operations Planning

The MODFLOW Option

Presentation Objectives

- ❖ Present MODFLOW'S basic functionality
- ❖ THE "MOD" IN MODFLOW: standard and not so standard MODFLOW packages
- * MODFLOW PLUS: options for coupling MODFLOW with surface water models
- Discussion

MODFLOW

$$\frac{\partial}{\partial x} \left(K_{xx} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{zz} \frac{\partial h}{\partial z} \right) - W = S_s \frac{\partial h}{\partial t}$$

where $K_{xx'}$ $K_{yy'}$, and K_{zz} are defined as the hydraulic conductivity along the x, y, and z coordinate axis,h represents the potentiometric head, W is the volumetric flux per unit volume being pumped, S_s is the specific storage of the porous material and t is time.

MODFLOW

PROS AND CONS

Pros

- MODFLOW is the most widely used and supported groundwater model in the world.
 - Thoroughly tested.
 - Widely used in Florida and by District.
 - Numerous developers and modifiers.
 - No significant learning curve.

Pros

- *KB has already been modeled using MODFLOW
- Time step flexibility
- Handles groundwater explicitly
- Many options for handling surface water

Cons (Stand Alone)

- MODFLOW lacks some functionality that may be important to project objectives
 - No surface water runoff
 - No unsaturated flow
 - Limited ability to simulate control structures

Cons (Stand Alone)

Groundwater flow and surface water flows have some scale and time incompatibilities

Finite Difference Limitations

MODFLOW Package Name (documented in Harbaugh and others, 2000, or in references cited in that work)	File Type of MODFLOW-2000 Name File	MT3DMS iSSType Code for Sinks/Sources
Basic	BAS6	n/a
Block-Centered Flow	BCF6	n/a
Layer Property Flow	LPF1	n/a
Hydrogeologic Unit Flow	HUF2	n/a
Horizontal Flow Barrier	HFB	n/a
Time-Variant Specified Head Boundary	CHD	1
Well	WEL	2
Drain	DRN	3
River	RIV	4
General Head Dependent Boundary	GHB	5
Recharge	RCH	7*
Evapotranspiration	EVT	8*
Streamflow-Routing	STR	21
Reservoir	RES	22
Specified Flow and Head Boundary	FHB	23
Interbed Storage	IBS	24
Transient Leakage	TLK	25
Lake	LAK	26
Multi-Node Well	MNW	27
Drain with Return Flow	DRT	28
Evapotranspiration with Segments	ETS	29

MODFLOW PACKAGES

- Standard Packages
 - Recharge (rch)
 - Evapotranspiration (evt)
 - -Well (wel)
 - Drain (drn)
 - -River (riv)
 - -Stream (sfr)
 - -Lake (lak)

Situation With Finite Difference Grid Superimposed

а

Status of Cells at End of Simulation

Cells Which Receive Recharge Under Option 1

Cella Which Receive Recharge Under Option 2

Cells Which Receive Recharge Under Option 3

Recharge and ET

Drain Package

River Package

Stream Package

Stream Package

Lake Package

AQUIFER GRID CELLS

CELLS

Wetland Package

Diversion Package

MODFLOW PLUS

COUPLING MODFLOW WITH SURFACE WATER MODELS

MODBRANCH

MODFLOW + BRANCH 3-D Groundwater Open Channel Flow Leakance

Calibration and Verification of the MODBRANCH Numerical Model of South Dade County, Florida

U. S. Army Corps of Engineers Jacksonville District February 2000

MODFLOW AND HSPF

FHM ISGW IHM

SWFWMD
Southern
District Model
HSPF,
MODFLOW pre-calibration,
1st phase of integrated model

The Integrated Hydrologic Model (IHM) and Application in the North Tampa Bay Region

SUMMARY

- MODFLOW on it's own will probably not be sufficient to meet the project objectives.
- *MODFLOW combined with a surface water model can meet project objectives.
- A MODFLOW platform for groundwater flow in the Basin model will be an efficient use of existing models.

DISCUSSION

